Core Mathematics 3 Paper E

$$|x - 0.2| < 0.03$$
 [2]

Hence, find all integers *n* such that (ii)

$$\left| 0.95^n - 0.2 \right| < 0.03 \tag{3}$$

2.

The diagram shows the curve with equation $y = x\sqrt{2-x}$, $0 \le x \le 2$.

Find, in terms of π , the volume of the solid formed when the region bounded by the curve and the x-axis is rotated through 360° about the x-axis. [5]

3. Solve, for $0 \le y \le 360$, the equation

$$2\cot^2 y^\circ + 5\csc y^\circ + \csc^2 y^\circ = 0.$$
 [6]

- A curve has the equation $x = y\sqrt{1-2y}$. 4.
 - *(i)* Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1-2y}}{1-3y}.$$
 [4]

The point A on the curve has y-coordinate -1.

(ii) Show that the equation of tangent to the curve at *A* can be written in the form

$$\sqrt{3}x + py + q = 0$$

where p and q are integers to be found.

[3]

5. The function f is defined by

$$f(x) \equiv 4 - \ln 3x, \quad x \in \mathbb{R}, \quad x > 0.$$

- (i) Solve the equation f(x) = 0. [2]
- (ii) Sketch the curve y = f(x). [2]

The function g is defined by

$$g(x) \equiv e^{2-x}, x \in \mathbb{R}.$$

(iii) Show that

$$fg(x) = x + a - \ln b$$
,

where a and b are integers to be found.

[3]

- **6.** Find the value of each of the following integrals in exact, simplified form.
 - (i) $\int_{-1}^{0} e^{1-2x} dx$ [4]

(ii)
$$\int_{2}^{4} \frac{3x^2 - 2}{x} dx$$
 [4]

- 7. $f(x) = 2 + \cos x + 3\sin x.$
 - (i) Express f(x) in the form

$$f(x) = a + b\cos(x - c)$$

where a, b and c are constants, b > 0 and $0 < c < \frac{\pi}{2}$. [3]

- (ii) Solve the equation f(x) = 0 for x in the interval $0 \le x \le 2\pi$. [4]
- (iii) Use Simpson's rule with four strips, each of width 0.5, to find an approximate value for

$$\int_0^2 f(x) dx.$$
 [3]

Turn over

8. $f(x) \equiv 2x^2 + 4x + 2, x \in \mathbb{R}, x \ge -1.$

(i) Express
$$f(x)$$
 in the form $a(x+b)^2 + c$. [2]

- (ii) Describe fully two transformations that would map the graph of $y = x^2$, $x \ge 0$ onto the graph of y = f(x). [3]
- (iii) Find an expression for $f^{-1}(x)$ and state its domain. [3]
- (iv) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram and state the relationship between them. [3]

9.

The diagram shows a graph of the temperature of a room, $T \,^{\circ}$ C, at time t minutes.

The temperature is controlled by a thermostat such that when the temperature falls to 12°C, a heater is turned on until the temperature reaches 18°C. The room then cools until the temperature again falls to 12°C.

For t in the interval $10 \le t \le 60$, T is given by

$$T = 5 + Ae^{-kt},$$

where *A* and *k* are constants.

Given that T = 18 when t = 10 and that T = 12 when t = 60,

- (i) show that k = 0.0124 to 3 significant figures and find the value of A, [6]
- (ii) find the rate at which the temperature of the room is decreasing when t = 20. [4]

The temperature again reaches 18°C when t = 70 and the graph for $70 \le t \le 120$ is a translation of the graph for $10 \le t \le 60$.

(iii) Find the value of the constant B such that for $70 \le t \le 120$

$$T = 5 + Be^{-kt}.$$