Core Mathematics 3 Paper E

1. (i) Solve the inequality

$$
\begin{equation*}
|x-0.2|<0.03 \tag{2}
\end{equation*}
$$

(ii) Hence, find all integers n such that

$$
\begin{equation*}
\left|0.95^{n}-0.2\right|<0.03 \tag{3}
\end{equation*}
$$

2.

The diagram shows the curve with equation $y=x \sqrt{2-x}, 0 \leq x \leq 2$.
Find, in terms of π, the volume of the solid formed when the region bounded by the curve and the x-axis is rotated through 360° about the x-axis.
3. Solve, for $0 \leq y \leq 360$, the equation

$$
\begin{equation*}
2 \cot ^{2} y^{\circ}+5 \operatorname{cosec} y^{\circ}+\operatorname{cosec}^{2} y^{\circ}=0 . \tag{6}
\end{equation*}
$$

4. A curve has the equation $x=y \sqrt{1-2 y}$.
(i) Show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{1-2 y}}{1-3 y} . \tag{4}
\end{equation*}
$$

The point A on the curve has y-coordinate -1 .
(ii) Show that the equation of tangent to the curve at A can be written in the form

$$
\sqrt{3} x+p y+q=0
$$

where p and q are integers to be found.
5. The function f is defined by

$$
\mathrm{f}(x) \equiv 4-\ln 3 x, \quad x \in \mathbb{R}, \quad x>0
$$

(i) Solve the equation $\mathrm{f}(x)=0$.
(ii) Sketch the curve $y=\mathrm{f}(x)$.

The function g is defined by

$$
\mathrm{g}(x) \equiv \mathrm{e}^{2-x}, \quad x \in \mathbb{R} .
$$

(iii) Show that

$$
\mathrm{fg}(x)=x+a-\ln b,
$$

where a and b are integers to be found.
6. Find the value of each of the following integrals in exact, simplified form.
(i) $\int_{-1}^{0} \mathrm{e}^{1-2 x} \mathrm{~d} x$
(ii) $\int_{2}^{4} \frac{3 x^{2}-2}{x} \mathrm{~d} x$
7.

$$
\mathrm{f}(x)=2+\cos x+3 \sin x .
$$

(i) Express $\mathrm{f}(x)$ in the form

$$
\begin{equation*}
\mathrm{f}(x)=a+b \cos (x-c) \tag{3}
\end{equation*}
$$

where a, b and c are constants, $b>0$ and $0<c<\frac{\pi}{2}$.
(ii) Solve the equation $\mathrm{f}(x)=0$ for x in the interval $0 \leq x \leq 2 \pi$.
(iii) Use Simpson's rule with four strips, each of width 0.5 , to find an approximate value for

$$
\begin{equation*}
\int_{0}^{2} \mathrm{f}(x) \mathrm{d} x . \tag{3}
\end{equation*}
$$

8.

$$
\begin{equation*}
\mathrm{f}(x) \equiv 2 x^{2}+4 x+2, \quad x \in \mathbb{R}, \quad x \geq-1 \tag{2}
\end{equation*}
$$

(i) Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$.
(ii) Describe fully two transformations that would map the graph of $y=x^{2}, x \geq 0$ onto the graph of $y=\mathrm{f}(x)$.
(iii) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.
(iv) Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ on the same diagram and state the relationship between them.
9.

The diagram shows a graph of the temperature of a room, $T^{\circ} \mathrm{C}$, at time t minutes.
The temperature is controlled by a thermostat such that when the temperature falls to $12^{\circ} \mathrm{C}$, a heater is turned on until the temperature reaches $18^{\circ} \mathrm{C}$. The room then cools until the temperature again falls to $12^{\circ} \mathrm{C}$.

For t in the interval $10 \leq t \leq 60, T$ is given by

$$
T=5+A \mathrm{e}^{-k t},
$$

where A and k are constants.
Given that $T=18$ when $t=10$ and that $T=12$ when $t=60$,
(i) show that $k=0.0124$ to 3 significant figures and find the value of A,
(ii) find the rate at which the temperature of the room is decreasing when $t=20$.

The temperature again reaches $18^{\circ} \mathrm{C}$ when $t=70$ and the graph for $70 \leq t \leq 120$ is a translation of the graph for $10 \leq t \leq 60$.
(iii) Find the value of the constant B such that for $70 \leq t \leq 120$

$$
\begin{equation*}
T=5+B \mathrm{e}^{-k t} . \tag{3}
\end{equation*}
$$

